Temperature- and age-dependent seizures in a mouse model of severe myoclonic epilepsy in infancy.
نویسندگان
چکیده
Heterozygous loss-of-function mutations in the alpha subunit of the type I voltage-gated sodium channel Na(V)1.1 cause severe myoclonic epilepsy in infancy (SMEI), an infantile-onset epileptic encephalopathy characterized by normal development followed by treatment-refractory febrile and afebrile seizures and psychomotor decline. Mice with SMEI (mSMEI), created by heterozygous deletion of Na(V)1.1 channels, develop seizures and ataxia. Here we investigated the temperature and age dependence of seizures and interictal epileptiform spike-and-wave activity in mSMEI. Combined video-EEG monitoring demonstrated that mSMEI had seizures induced by elevated body core temperature but wild-type mice were unaffected. In the 3 age groups tested, no postnatal day (P)17-18 mSMEI had temperature-induced seizures, but nearly all P20-22 and P30-46 mSMEI had myoclonic seizures followed by generalized seizures caused by elevated core body temperature. Spontaneous seizures were only observed in mice older than P32, suggesting that mSMEI become susceptible to temperature-induced seizures before spontaneous seizures. Interictal spike activity was seen at normal body temperature in most P30-46 mSMEI but not in P20-22 or P17-18 mSMEI, indicating that interictal epileptic activity correlates with seizure susceptibility. Most P20-22 mSMEI had interictal spike activity with elevated body temperature. Our results define a critical developmental transition for susceptibility to seizures in SMEI, demonstrate that body temperature elevation alone is sufficient to induce seizures, and reveal a close correspondence between human and mouse SMEI in the striking temperature and age dependence of seizure frequency and severity and in the temperature dependence and frequency of interictal epileptiform spike activity.
منابع مشابه
A BAC transgenic mouse model reveals neuron subtype-specific effects of a Generalized Epilepsy with Febrile Seizures Plus (GEFS+) mutation.
Mutations in the voltage-gated sodium channel SCN1A are responsible for a number of seizure disorders including Generalized Epilepsy with Febrile Seizures Plus (GEFS+) and Severe Myoclonic Epilepsy of Infancy (SMEI). To determine the effects of SCN1A mutations on channel function in vivo, we generated a bacterial artificial chromosome (BAC) transgenic mouse model that expresses the human SCN1A ...
متن کاملThe voltage-gated sodium channel Scn8a is a genetic modifier of severe myoclonic epilepsy of infancy.
The mammalian genome contains four voltage-gated sodium channel genes that are primarily expressed in the central nervous system: SCN1A, SCN2A, SCN3A and SCN8A. Mutations in SCN1A and SCN2A are responsible for several dominant idiopathic epilepsy disorders, including generalized epilepsy with febrile seizures plus (GEFS+) and severe myoclonic epilepsy of infancy (SMEI). Mutations in SCN8A are a...
متن کاملDravet syndrome, what is new?
Dravet syndrome (DS) is one of the most severe genetic epilepsies of childhood. Charlotte Dravet described severe myoclonic epilepsy in infancy in 1978. Shortly after the initial report, many cases were published. Most of the cases have the SCN1A mutation. A variant of DS called borderline severe myoclonic epilepsy in infancy has similar clinical and electrographic features without myoclonus. T...
متن کاملEpilepsy syndromes in infancy.
An increasing number of infantile epilepsy syndromes have been recognized. However, a significant number of infants (children aged 1-24 months) do not fit in any of the currently used subcategories. This article reviews the clinical presentation, electroencephalographic findings, evolution, and management of the following entities: early infantile epileptic encephalopathy, early myoclonic epile...
متن کاملA patient with myoclonic epilepsy in infancy followed by myoclonic astatic epilepsy
Myoclonic epilepsy in infancy (MEI) is a primary generalized epilepsy. According to the literature, the outcome of MEI is usually benign. Here we report a patient who developed myoclonic astatic epilepsy at age four, having been seizure free without antiepileptic drug treatment for 2 years after his recovery from MEI. At age four, a video-EEG-recording showed frequent head nodding (atonic seizu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 106 10 شماره
صفحات -
تاریخ انتشار 2009